A WIRELESS PACING SYSTEM MINIATURIZED FOR VASCULAR IMPLANTATION

Parinaz Abiri^{1,2}, Alireza Yousefi³, Tzu-Chieh Chou⁴, Yu-Chong Tai⁴, Dejan Markovic³, and Tzung Hsiai^{1,2,4}

¹Department of Bioengineering, School of Engineering and Applied Sciences, UCLA ²Department of Medicine, David Geffen School of Medicine, UCLA ³Department of Electrical Engineering, School of Engineering and Applied Sciences, UCLA ⁴Department of Medical Engineering, California Institute of Technology

UCLA ENGINEERING Henry Samueli School of **Engineering and Applied Science**

David Geffen School of Medicine

INTRODUCTION

• Cardiac pacemakers are the primary non-pharmacologist therapy for patients with bradyarrhythmias and conduction disorders

METHODS

- Magnetic Resonance Imaging of the thorax over a full cardiac Ο cycle was used to estimate anatomical range for antenna
- Power transfer efficiency was then tested using ANSYS Maxwell Ο and PSPICE simulation software.
- Bench tests validated simulation results. \bigcirc
- Ex vivo and in vivo experiments were performed by deploying the Ο receiver into the anterior cardiac vein of Yorkshire pigs.

Figure 1: (a) traditional cardiac pacemaker and (b) Micra leadless pacemaker

 ~10% of all pacemaker implants have lead-related complications Although the recent FDA approval of the leadless Micra has eliminated some of these risks, the device carries new complications

TRADITIONAL PACEMAKER [1][2]	MICRA LEADLESS PACEMAKER [3]
Lead Dislodgement	Large Delivery Catheter
Myocardial Perforation	Difficult Implantation
Valvular Damage	Long Fluoroscopy Time
Pericarditis	Single-Chamber Only
Cardiac Temponade	Limited Battery Life
Vascular Stenosis	Fixation Mechanism
Extracardiac Stimulation	
Coil Fracture & Hemorrhaging	
Insulation Breaks	
Dangerous Lead Removal	
Twiddler Syndrome	

 Almost all of these limitations arise from the continued need to integrate a battery in pacer packaging that is fixated inside the myocardium.

Figure 4: (A) MRI measurements, (B) pacer implant in pig experiments

RESULTS

Figure 5: Simulation and bench test results

• EKG tracings demonstrating pacing are shown in Figure 6:

SYSTEM DESIGN

• A miniature wireless pacing system was developed in which power transmission to the receiver antenna and stimulation electrodes were provided in intermittent pulses controlled by the transmitter circuitry [4].

Figure 2: remote-controlled stimulation system

- Advantages of remote-control stimulation:
 - \circ Reduction in size \rightarrow removal of complex logic circuitry.
 - \circ Reduction in size \rightarrow removal of a battery.
 - \circ Reduction in power \rightarrow use of wired over wireless transmission.
 - \circ Reduction in power \rightarrow delivery of several short-pulse wireless transmissions as opposed to a single long transmission.
 - \circ Reduction in SAR \rightarrow decreased time of transmission.

Figure 6: EKG from (A) ex vivo and (B) in vivo pig experiments

DISCUSSION & CONCLUSION

- miniaturization of a wirelessly powered pacing system o The allows for implantation into the anterior cardiac vein.
- o This minimizes the mechanical failure points associated with a cardiac chamber implant which experiences dramatic shifts in applied force and position during cyclical cardiac contractions.
- The presented study provides a basis for the development of a longterm wireless implantable pacemaker

ACKNOWLEDGEMENTS

This works was supported by UCLA MSTP, UCLA David Geffen Scholarship, R01HL083015, R01HL118650, R01HL129727, U54 EB0220002

REFERENCES

[1] T. Mela and J. Singh, "Leadless pacemakers: leading us into the future?", Eur Heart J, vol. 36, no. 37, pp. 2520-2522, 2015.

- [2] Modern Pacemakers Present and Future. InTech, 2011.
- [3] "FDA approves first leadless pacemaker to treat heart rhythm

2.8x2x20 mm receiver \rightarrow packaged in 9 Fr Ο

catheter for delivery

Figure 3: Tx and Rx

NewsEvents/Newsroom/PressAnnouncements/ucm494417.htm.

[4] Abiri P, et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci Rep. 2017; 7(1):6180.