

Contact: Christine Liu
David Geffen School of Medicine at UCLA
Email: cmliu@mednet.ucla.edu

Assessment of maternal and infant antibody response to COVID-19 and transplacental transfer ratios at labor & delivery

Christine Liu¹, Mary Catherine Cambou², Thalia Mok³, Viviana Fajardo Martinez⁴, Debika Battacharya², Tara Kerin¹, Francisco Javier Ibarrondo², Trevon Fuller⁵, Sophia Paiola¹, Grace Aldrovandi¹, Rashmi Rao³, Otto Yang², Karin Nielsen-Saines¹

¹Department of Pediatrics, Division of Infectious Diseases; David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA; 90095; USA

²Department of Medicine, Division of Infectious Diseases; David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA; 90095; USA

³Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine; David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA; 90095; USA

⁴Department of Pediatrics, Division of Neonatology; David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA; 90095; USA

⁵UCLA Institute for the Environment and Sustainability, Los Angeles, CA; 90095; USA

Results

Background

- Newborn protection from viral infection is dependent on both the neonatal innate immune response and transplacental transfer of maternal antibodies. When a woman is infected during pregnancy, the fetus can obtain specific maternally derived IgG, not IgM nor IgA, through placental transport¹.
- Understanding the maternal antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy at the time of labor & delivery (L&D) can elucidate the dynamics of placental transfer to the newborn as well as inform neonatal management and maternal vaccination strategies².
- There are limited data describing how coronavirus disease 2019
 (COVID-19) disease severity shapes the maternal and infant serologic
 response at delivery. Evaluation by disease severity can better
 characterize the degree of protection conferred to the newborn.

Objectives

- To assess the association of COVID-19 diagnosis date-to-delivery interval with maternal IgG and transplacental transfer ratio in pregnant women with active or recovered SARS-CoV-2 infection at L&D
- To investigate SARS-CoV-2-specific antibody concentrations of pregnant women at L&D in relation to disease severity
- To compare infant serological response at birth when exposed to varying disease severity *in utero*

Methods

Study Design This study is a part of the COVID19 Outcomes in Mother-Infant Pairs (COMP) study, a prospective observational cohort of mother-infant dyads diagnosed with SARS-CoV-2 infection in pregnancy in the

- United States and in Brazil.
 Data Collection: April 15, 2020 to May 28, 2021
- Pregnant women >16 years of age with confirmed SARS-CoV-2 infection by nasopharyngeal (NP) reverse-transcription polymerase chain reaction (RT-PCR) or serology at any point during gestation were eligible for enrollment at the University of California, Los Angeles site.
- Women with a history of COVID-19 vaccination were not eligible for enrollment.
 Peripheral blood specimens were obtained from pregnant women at admission for delivery. This
- included mothers with active or recovered SARS-CoV-2 infection at L&D. Cord blood was collected at delivery when feasible, and infant blood specimens were collected between 24 to 48 hours of life.

Pregnancy was categorized into three trimesters according to the American College of Obstetrics and Gynecology (ACOG): first trimester (0 – 13 weeks), second trimester (14 – 27 weeks) and third trimester (2.20 weeks)

Women with SARS-CoV-2 infections were grouped into the National Institutes of Health (NIH) COVID-19 severity of illness categories³. The clinical categories were collapsed into asymptomatic, mild/moderate and severe/critical for this analysis.

Clinical Demographics

Table 1: Demographics and clinical characteristics of mother-infant dyads infected with SARS-CoV-2 during pregnancy

Maternal Demographics and	All Women (N = 101)		
Medical History			
Age, Median (Range)	33 (16-42)		
Race/Ethnicity	No. (%)		
Latina	46 (45.5)		
White	27 (26.7)		
Black/African American	8 (7.9)		
Asian/Other	20 (19.8)		
Insurance	No. (%)		
Public	36 (35.6)		
Private	65 (64.4)		
Gravidity, Median (Range)	2 (1-10)		
COVID-19 Severity	No. (%)		
Asymptomatic	14 (13.9)		
Mild / Moderate	76 (75.2)		
Severe / Critical	11 (10.9)		
Gestational Age at Diagnosis	No. (%)		
First Trimester	10 (9.9)		
Second Trimester	39 (38.6)		
Third Trimester	52 (51.5)		
Diagnosis Date-to-Delivery	62 (32-120)		
Interval, Median (IQR), Days			
Medical History Prior to	No. (%)		
Pregnancy			
Any Comorbidities	52 (51.5)		
Obesity (Pre-Pregnancy BMI	32 (31.7)		
>30)			
Diabetes Mellitus (Not	3 (3.0)		
Gestational)			
Congenital Heart Disease	5 (5.0)		
Asthma	12 (11.9)		

Figure 1: Correlations among anti-SARS-CoV-2 IgG levels at delivery from maternal sera (n = 101), matched cord blood (n = 72), infant sera (n = 86), and diagnosis dateto-delivery interval.

(a) Correlation between IgG levels from seropositive mother at L&D and matched cord blood serum ($R^2 = 0.6271$) and infant serum ($R^2 = 0.6743$). All concentrations (ng/mL) were log₂-transformed.

(b) Correlation between maternal IgG levels at L&D and COVID-19 diagnosis date-to-delivery interval (R² = 0.0542).

(c) Correlation between transplacental transfer ratio $(\log_2$ -transformed infant IgG / \log_2 -transformedmaternal IgG level) and COVID-19 diagnosis date-to-delivery interval (R^2 = 0.2732). Dotted lines represent 95% confidence intervals.

Table 2: Serology of mother-infant dyads infected with SARS-CoV-2 during pregnancy

	Maternal Serum at	Cord Blood	intant Serum at
	L&D		Delivery
Anti-SARS-CoV-2 IgG, IgM, and IgA	N = 101	N = 72	N = 86
	N (%)	N (%)	N (%)
IgG + Total	89 (88)	65 (90)	69 (80)
IgM+ Total	90 (89)	9 (13)	O (O)
IgA+ Total	84 (83)	8 (11)	O (O)
IgG (+) / IgM (+)/ IgA (+)	77 (76)	8 (11)	0 (0)
IgG (+) / IgM (-)/ IgA (-)	3 (3)	58 (81)	0 (0)
IgG (+) / IgM (+)/ IgA (-)	6 (6)	1 (1)	0 (0)
IgG (-) / IgM (-)/ IgA (-)	5 (5)	5 (7)	17 (20)
IgG (-) / IgM (+)/ IgA (-)	3 (3)	0 (0)	0 (0)
IgG (-) / IgM (+)/ IgA (+)	4 (4)	0 (0)	0 (0)
IgG (-) / IgM (-)/ IgA (+)	0 (0)	0 (0)	0 (0)

Figure 2: Neonatal IgG level (n = 84) and transplacental transfer ratio (n = 69) changes by trimester of COVID-19 diagnosis.

(a) Transplacental transfer ratio [infant IgG level (ng/mL) / maternal IgG level (ng/mL)] by trimester of pregnancy of diagnosis (P = 0.06).

(b) Infant IgG level (ng/mL) at birth by trimester of pregnancy of diagnosis (P = 0.99).

Data are presented as mean \pm SEM. One-way ANOVA and Tukey's multiple comparisons test were performed.

Figure 3: Neonatal antibody response at birth to maternal SARS-CoV-2 infection.

(a) Infant IgG levels (ng/mL) at birth in asymptomatic vs symptomatic mothers (****P < 0.0001).
(b) Infant IgG levels (ng/mL) at birth by maternal COVID-19 disease severity. Asymptomatic vs severe/critical disease exposure resulted in P = 0.07.

Data are presented as mean \pm SEM. Welch's t test was performed for asymptomatic vs symptomatic. Oneway ANOVA and Tukey's multiple comparisons test were performed for asymptomatic vs mild/moderate vs severe/critical groups. After performing a Log₂-transformation of infant IgG levels, P = 0.0661 for asymptomatic vs symptomatic. Of note, 7/13 asymptomatic infant sera and 10/71 symptomatic infant sera were 0 ng/mL and were lost in log₂-transformation.

Figure 4: Maternal antibody response at L&D to SARS-CoV infection during pregnancy (n = 94).

(a) \log_2 of maternal IgG levels at L&D for asymptomatic vs symptomatic patients (*P < 0.05). \log_2 of maternal IgG levels at L&D by COVID-19 disease severity (**P < 0.01). (b) \log_2 of maternal IgM levels at L&D for asymptomatic vs symptomatic patients (ns, not significant; P > 0.05). \log_2 of maternal IgM levels at L&D by COVID-19 disease severity (P > 0.05).

(c) \log_2 of maternal IgA levels at L&D for asymptomatic vs symptomatic patients (ns, not significant; P > 0.05). \log_2 of maternal IgA levels at L&D by COVID-19 disease severity(P > 0.05).

12/94 cases were 0 ng/mL and were lost in \log_2 -transformation. Data are presented as mean \pm SEM. Welch's t test was performed for asymptomatic vs symptomatic. One-way ANOVA and Tukey's multiple comparisons test were performed for asymptomatic vs mild/moderate vs severe/critical groups.

Methods Cont.

Antihody Measurement

- All maternal and cord blood samples were tested for quantitative anti-SARS-CoV-2 IgA, IgG and IgM. Sera were analyzed by enzyme-linked immunosorbent assay (ELISA) to detect the spike receptor-binding domain (RBD) IgA, IgG and IgM^{3,4}.
- Transplacental Transfer Ratio = Log₂[Infant IgG Level at birth] / Log₂ [Maternal IgG Level at L&D]
 Statistical Analysis:
 - Correlations were studied using Pearson correlation analysis and linear regression. Standard descriptive analyses including Welch's t test and one-way ANOVA were used as appropriate to compare raw antibody concentrations, \log_2 -transformed antibody levels, and transplacental transfer ratios among categories divided by trimester of diagnosis or COVID-19 disease severity. Statistical significance was set at P < 0.05. Graphpad PRISM 9.0 software was used to conduct

Results

- 101 women enrolled in the cohort delivered by May 28, 2021. Of these, 85% were diagnosed with SARS CoV-2 by PCR and 15% by SARS-CoV-2 serology. Cord blood was available for 72 deliveries, and infant specimens were available for 86 newborns (one triplet and two twins).
- 77% of the maternal cohort produced anti-SARS-CoV-2 IgG, IgM, and IgA isotypes; 93% of women had at least one antibody class positive for SARS-CoV-2; and 5% of women had no detectable antibody class. Infant serum at delivery only contained IgG, and neither IgM nor IgA was detected (**Table 2**). This is expected (in the absence of infant infection from mother-to-child transmission) considering that only maternal IgG can cross the placenta.
- In pregnant women with active infection or who had recovered from COVID-19, anti-SARS-CoV-2 IgG concentrations at delivery positively correlated with cord blood and infant IgG levels at birth (**Fig. 1a**), consistent with previous studies⁵.
- Maternal IgG levels waned when further from the period of active infection (**Fig. 1b**); conversely, transplacental transfer ratios increased slightly with increased duration between onset of infection and delivery (**Fig. 1c**, R² = 0.27). As demonstrated by comparable studies^{2,5}, this finding may be an important factor when considering the timing of vaccination in pregnant women.
- Surprisingly, the transplacental transfer ratio (**Fig. 2a**, P = 0.06) and infant IgG levels at birth (**Fig. 2b**, P = 0.99) did not significantly differ by trimester of diagnosis, potentially due to the role of maternal disease severity in increasing antibody levels. However, there appeared to be a weak linear trend with the transfer ratio, as seen in Figure 1c.
- Maternal IgG levels increased with disease severity (Fig. 4a), suggestive of a more robust immunologic response. No significant difference was found in maternal IgM (Fig. 4b) or IgA (Fig. 4c) when grouped by COVID-19 severity, which is expected considering these are produced in early phases of infection.
- A significant increase in infant IgG levels at birth was observed in children born to women with symptomatic prenatal SARS-CoV-2 infection as opposed to infants born to asymptomatic mothers (p < 0.0001). A trend towards a more robust infant serological response was observed in infants with more severe/critical COVID-19 exposure *in utero*.

Conclusions

- Our findings demonstrate how altered maternal responses across distinct COVID-19 disease severity categories influence neonatal protection against SARS CoV-2.
- Future directions include neutralizing antibody studies to further characterize maternal and infant immune protection and evaluation of the role of T-cell immunity in mother-infant dyads following natural infection. Future studies should compare immune responses during pregnancy elicited by natural infection versus immunization during gestation.

References

- Prabhu M, Murphy EA, Sukhu AC, et al. Antibody Response to Coronavirus Disease 2019 (COVID-19) Messenger RNA Vaccination in Pregnant Women and Transplacental Passage Into Cord Blood
- 2021;10.1097/AOG.0000000000004438. doi:10.1097/AOG.000000000004438

 2. Flannery DD, Gouma S, Dhudasia MB, et al. Assessment of Maternal and Neonatal Cord Blood SARS-CoV-2 Antibodies and Placental Transfer Ratios. *JAMA Pediatr.* 2021;175(6):594–600.

[published online ahead of print, 2021 Apr 28]. Obstet Gynecol.

- doi:10.1001/jamapediatrics.2021.0038
 Stadlbauer, D., Amanat, F., Chromikova, V., Jiang, K., Strohmeier, S., Arunkumar, G.A., Tan, J., Bhavsar, D., Capuano, C., Kirkpatrick, E., et al. (2020). SARS-CoV-2 Seroconversion in Humans: A Detailed Protocol for a Serological Assay, Antigen Production, and Test Setup. Curr Protoc Microbiol 57, e100.
- 4. Ibarrondo, F.J., Fulcher, J.A., Goodman-Meza, D., Elliott, J., Hofmann, C., Hausner, M.A., Ferbas, K.G., Tobin, N.H., Aldrovandi, G.M., and Yang, O.O. (2020). Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N Engl J Med *383*, 1085-1087.

 5. Poon J.C. Leung BW. Ma T. et al. Relationship between viral load, infection-to-delivery interval.
- 5. Poon LC, Leung BW, Ma T, et al. Relationship between viral load, infection-to-delivery interval and mother-to-child transfer of anti-SARS-CoV-2 antibodies. *Ultrasound Obstet Gynecol*. 2021;57(6):974-978. doi:10.1002/uog.23639

Acknowledgements

This work was partly supported by T32MH080634 (M.C.C.), Al140718 (K.N.S.) and the UCLA DGSOM STTP (C.L.)