<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DGSOM Professionalism Council: Programs, Processes, and Products of</td>
<td>Jennifer Phan, Emily Dubina, Vatche Tchekmeydian M.D., Meredith Szumski, Ed.D.</td>
</tr>
<tr>
<td></td>
<td>Student-Led Initiatives at UCLA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Distribution of personality scores differ between medical school</td>
<td>Jiwoon Chang and Sebastian Uijtdehaage</td>
</tr>
<tr>
<td></td>
<td>classes selected with and without the multiple mini-interview</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Do Medical Students Admitted through Multiple-Mini-Interview</td>
<td>Rasnik K. Singh, Paul F. Wimmers, Sara Mottahedan, Ming Lee</td>
</tr>
<tr>
<td></td>
<td>Perform Better in Problem-Based Learning?</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Validation and cross-validation of an instrument for assessing</td>
<td>Ming Lee, Paul F. Wimmers</td>
</tr>
<tr>
<td></td>
<td>problem-based learning (PBL) performance</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Teaching Pattern Recognition in Medical Education: Combined Effects</td>
<td>Khanh-Phuong Thai, Sally Krasne, Philip Kellman</td>
</tr>
<tr>
<td></td>
<td>of Perceptual Learning and Declarative Instruction</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>What does it take to Shake Learners’ (Erroneous) Belief that</td>
<td>Veronica X. Yan, Elizabeth L. Bjork, and Robert A. Bjork</td>
</tr>
<tr>
<td></td>
<td>Blocking Exemplars Optimizes Category Induction?</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Examining the Mediator Explanation of Error-enhanced Encoding:</td>
<td>Courtney M. Clark, Veronica X. Yan, Robert A. Bjork</td>
</tr>
<tr>
<td></td>
<td>Does it Matter Whether the Target is Present or Absent?</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Does Generation Protect Information From Retrieval-Induced</td>
<td>Saskia Giebl, Toshiya Miyatsu, Alan Castel, Elizabeth Bjork</td>
</tr>
<tr>
<td></td>
<td>Forgetting?</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Memory Selectivity is Associated with Greater Engagement of Areas</td>
<td>Michael S. Cohen, Jesse Rissman, Alan D. Castel, Barbara J. Knowlton</td>
</tr>
<tr>
<td></td>
<td>Involved in Deep Semantic Encoding for High-value Items.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>An ECG Perceptual and Adaptive Learning Module Produces Large and</td>
<td>Sally Krasne, Carl Stevens, Zhen Gu, James Niemann</td>
</tr>
<tr>
<td></td>
<td>Long-term Improvements in ECG Interpretation</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Third Year Medical Students’ Perceptions and Use of Electronic</td>
<td>Shahram Yazdani, Anju Relan, LuAnn Wilkerson</td>
</tr>
<tr>
<td></td>
<td>Diagnostic Reasoning Tools in Clinical Settings</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Deferred Action for Childhood Arrivals (DACA) Students and Medical</td>
<td>Yohualli Balderas, Mithi del Rosario, Lawrence Doyle, David Hayes-Bautista</td>
</tr>
<tr>
<td></td>
<td>Education</td>
<td></td>
</tr>
</tbody>
</table>
DGSOM Professionalism Council: Programs, Processes, and Products of Student-Led Initiatives at UCLA

Jennifer Phan, Emily Dubina, Vatche Tchekmeydian, Meredith Szumski
DGSOM at UCLA

Context:

With the continued drive for innovations within medical education, many institutions, including UCLA, have relied on a traditional model for developing initiatives through the faculty-driven approach.\(^1\) In 2008, faculty members were asked to develop a policy dictating "professional expectations" for student presence on social media. Students were included in the discussion, however there was no formal policy regarding participation in the policy-making process. To remedy, one student leader conceived of establishing a council comprised of all stakeholders (faculty, staff, and students) with equal voice to ground professionalism discussion and decision-making at DGSOM. His idea provided the framework for the creation of the DGSOM Professionalism Council, a subset of the Medical Student Council. The overall objective of the Council is to address the practice of professionalism and ethics within the medical school community and serve as the formal policy-making body tasked with addressing related topics such as student mistreatment and misconduct. The council provides a basis for dialogue regarding ethical dilemmas in medicine and issues of professionalism within the greater hospital environment.

Objectives:

- Examine the evolution of student-driven professionalism innovations over a five-year period at the David Geffen School of Medicine at UCLA
- Describe the drivers, challenges, and outcomes to these innovations
- Introduce a framework for measuring the success of student-driven innovations

Key Message:

Student-driven innovations are beneficial to medical programs and should be considered as a valuable tool. The literature suggests that students have an enthusiasm for change, have a strong understanding of the student culture, and are eager to be involved in initiatives that can affect their education.

Conclusion:

The development of the DGSOM Professionalism Council, along with the curricular and extracurricular programs that have emerged as a result, are examples of successful student-driven innovations.

References:

Distribution of personality scores differ between medical school classes selected with and without the multiple mini-interview

Jiwoon Chang and Sebastian Uijtdehaage
DGSOM at UCLA

Introduction:

The Multiple Mini-Interview (MMI) was introduced in 2004 as a more reliable method for assessing medical school applicants' non-cognitive characteristics, such as empathy, communication and leadership skills. Recent studies and anecdotal evidence reported by our faculty suggest that the MMI may favor applicants who are extraverted. Thus, MMI may result in relatively less diverse medical school classes and may affect specialty choice. Using the five-factor model of personality, we compared the distribution of personality factor scores of medical students selected with the MMI versus the traditional admissions interview.

Method:

In this cross-sectional observational study we surveyed the classes of 2013 and 2014 (no-MMI) as well as the classes of 2015 and 2016 (MMI) with an online version of the Big Five Inventory. This inventory consists of 44 five-point Likert-scale items assessing agreeableness, conscientiousness, extraversion, neuroticism, and openness. Participation was solicited by email and was voluntary. Distributions were compared with non-parametric Mann-Whitney Tests. UCLA IRB reviewed and approved this protocol.

Results:

A total of 146 students in no-MMI group (response rate = 42%) and 174 students in the MMI group (response rate 60%) participated. Distribution differences were found for extraversion score only (p = 0.44; no-MMI group median = 3.25 vs MMI group median= 3.56). The range of scores did not appear to differ. A marginally significant difference (p=0.07) was found for conscientiousness with lower scores in the MMI group.

Conclusion:

The introduction of the MMI in the admissions review process may have led to selection of students that tend to be more extraverted and perhaps less conscientious compared to previous cohorts--a finding that may or may not be desirable. We found no evidence, however, that MMI resulted in more homogeneous classes given the similar ranges of scores. A limitation of this study is the low response rate in the no-MMI group that may have resulted in response bias.
Do Medical Students Admitted through Multiple-Mini-Interview Perform Better in Problem-Based Learning?

Rasnik K. Singh, Paul F. Wimmers, Sara Mottahedan, Ming Lee
DGSOM at UCLA

Introduction:

This study explores whether students selected via multiple mini-interview (MMI) perform better in problem-based learning (PBL) as assessed in four domains by small-group facilitators.

Methods:

There are 20 PBL groups per class per block, each led by a facilitator who evaluates students on the quality of learning issue write-ups and observed performance and behavior. Performance in four domains was compared between two traditionally-selected classes (class of 2013/2014) and two MMI-selected classes (class of 2015/2016) (total \(N = 635 \)). Block 1 data from each class was used to minimize the influence of curriculum on PBL performance. The four domains assessed were: Problem Solving; Use of Information; Group Process; and Professionalism, all scored on a 7-point Likert scale. ANOVA was done to compare the four domains between the two groups of classes. The Likert-scale is accompanied by 57 milestone descriptors of student behavior. We hypothesized that an effect of MMI on student performance would be most noticeable in Group Process. Chi-square tests were used to compare group differences on five selected milestones that were most likely to be affected by MMI: Displays initiative in group discussions; Frequently and openly discusses reasoning process; Knows and shows limits in own knowledge; Frequently takes on a leadership role; Knowledgeable about own and others’ learning issues. Significant \(p \)-value is <.05, 1-sided.

Results:

ANOVA revealed significant differences for all domains: Problem Solving- \(F(1,629)=16.14, p<.0001, \eta^2 =.025 \); Use of Information- \(F(1,629)=15.43, p<.0001, \eta^2 =.024 \); Group Process- \(F(1,626)=11.44, p<.001, \eta^2 =.018 \); and Professionalism- \(F(1,626)=14.94, p<.0001, \eta^2 =.023 \). The MMI group was significantly stronger in milestone #2, Traditional (26%) vs. MMI (39%), \(\chi^2(1, 635) = 10.97, p = .001 \); milestone #3, Traditional (33%) vs. MMI (54%), \(\chi^2(1, 635) = 27.12, p<.0001 \); and milestone #4, Traditional (20%) vs. MMI (26%), \(\chi^2(1, 635) = 3.17, p = .046 \).

Conclusion:

Students selected via MMI had higher scores in all domains. Furthermore, these students seem to be more expressive and eager to take on leadership roles. Our results indicate that MMI may select cognitively stronger and socially expressive students who perform better in PBL as assessed by facilitators.
Validation and cross-validation of an instrument for assessing problem-based learning (PBL) performance

Ming Lee and Paul F. Wimmers
DGSOM at UCLA

Introduction

Despite a substantial amount of research has been devoted to studying the effectiveness of the PBL curriculum, not much effort has been spent on assessing students’ performance in a PBL setting, with even less effort on validating the assessment instruments. Without reliable and valid instruments, the process and effect of PBL cannot be consistently and accurately understood.

Objectives

This study examined the reliability and validity of an instrument assessing PBL performance in four domains (Problem Solving, Use of Information, Group Process, and Professionalism) using a 7-point Likert scale.

Methods

The archived assessment data of PBL performance of the classes of 2013 (N = 151) and 2014 (N = 159) medical students in nine blocks were used in the study to validate and cross-validate psychometric properties of the instrument. Generalizability (G) studies were executed for reliability examination. Correlations of the PBL scores with five other outcome measures (USMLE Step 1, NBME Comprehensive Basic Science Exam, NBME Comprehensive Clinical Science Exam, Clinical Performance Exam, and USMLE Step 2 CK) were examined for checking convergent and discriminant validity. Predictive validity was examined by using the PBL scores to predict five medical school outcomes.

Results

The G studies showed a similar pattern of the findings on the 2013 and 2014 cohorts, with the largest variance component being associated with students (73% and 66%, respectively) and a G coefficient of .75 and .67, respectively. These findings demonstrated that the assessment was fairly good at ranking students based on their varied proficiency in PBL performance. The PBL scores of the 2013 cohort were correlated more highly with those of basic science measures than those of clinical assessments, indicating support for convergent and discriminant validity. The results, however, were not replicated in the 2014 cohort. Findings on predictive validity examination demonstrate support for the PBL performance total score as a good predictor for the scores of basic and clinical science knowledge. Its value for predicting the scores of clinical performance needs further investigation.

Conclusions

The study provides support for reliability of PBL performance assessment. Additional studies are needed to confirm its validity.
Teaching Pattern Recognition in Medical Education: Combined Effects of Perceptual Learning and Declarative Instruction

Khanh-Phuong Thai¹, Sally Krasne², Philip Kellman¹
¹Department of Psychology and ²Department of Physiology

Abstract:

From interpreting electrocardiograms to seeing tumors in an x-ray, competence in medical practice requires expertise in rapid pattern recognition. The development of such expertise involves perceptual learning (PL): experienced-induced changes in the pick-up of information (Gibson, 1969). Recent research suggested that such expertise can be accelerated using PL-based technology (e.g., Krasne et al., 2013; Kellman, Massey & Son, 2009). However, it is unclear how to optimally integrate PL practice with conventional instruction. In two experiments, we examined the complementary effects of PL-based practice and declarative instruction in learning dermatological morphologies. We developed a Perceptual and Adaptive Learning Module (PALM) consisting of a series of interactive, non-repeating examples to train for the identification of 12 different skin lesions. While PL practice can improve the internal workings of students' perceptual processes, declarative instruction can potentially focus their attention on distinguishing features, thus facilitating further learning of perceptual skills that support their ability to recognize relevant patterns important for accurate classifications.

One group of undergraduates received a PALM, then a textbook excerpt; the other group received the same in reverse order. In Study 1, the excerpt contained a picture with each description of skin lesions; in Study 2, the excerpt contained only text. Participants were tested three times on their ability to classify new instances of learned skin lesions and to interpret novel descriptions of lesions, after one type of instruction, after both, and again after a one-week delay. As in previous PALM studies (e.g. Kellman et al., 2009; Krasne et al., 2013), all participants showed strong learning gains that persisted after the one-week delay. Both studies showed no difference in classification ability between the two conditions, but in Study 2, the textbook-first condition enhanced student's understanding of verbal descriptions more than the PALM-first condition. One possibility is that reading text without images required students to engage in deeper processing to generate matching representations, leading to better conceptual understanding than those that received PALM training first. These findings suggest that perceptual learning combined with declarative instruction can potentially alleviate ubiquitous issues of pattern recognition in medicine and other domains of expertise.
What does it take to Shake Learners (Erroneous) Belief that Blocking Exemplars Optimizes Category Induction?

Veronica X. Yan, Elizabeth L. Bjork, and Robert A. Bjork
Department of Psychology

Abstract:

Doctors have to learn to recognize different types of diseases, many of which share overlapping symptoms, and are not bound by hard and fast rules. Being able to categorize new cases as disease A, rather than diseases B, C and D—and to understand how best to learn this—is therefore a critical skill. While a body of research (e.g. Kornell & Bjork, 2008; Wahlheim, Dunlosky, & Jacoby, 2011) has demonstrated the interleaving the examples of different categories leads to better category induction than does studying examples from a given category successively (i.e., blocked presentation), learners overwhelmingly believe that blocked study leads to better learning.

This metacognitive illusion may have two sources: (a) the fluency experienced during blocked study, and (b) a priori theories (see Tauber, Dunlosky, Rawson, Wahlheim, & Jacoby, 2012) about the superiority of blocking over interleaving. We both tried to draw learners' attention to the test performance—by asking participant show an artist's painting had been studied—and provided different levels of theory-based de-biasing information about interleaving.

Participants were reasonably good at reporting “interleaved” when an artist’s paintings had, in fact, been interleaved, but they were also more likely to report a misidentified blocked artist as being an interleaved artist. That is, participants appeared to use the following heuristic: “If I incorrectly identify an artist, then I probably studied that artist's paintings in an interleaved manner.” Providing information about the interleaving benefit had, at most, only modest effects, with fewer than half of the participants judging interleaving to be better for their own learning even when told that 90% of people learn better through interleaving, even though it feels easier to study the artists blocked, because interleaving enhances discrimination between the artists. In summary, our results demonstrate the difficulty of dislodging learners' faith in blocked category induction.
Examining the mediator explanation of error-enhanced encoding: Does it matter whether the target is present or absent?

Courtney M. Clark, Veronica X. Yan, Robert A. Bjork
Department of Psychology

Abstract

Most learners try to avoid making mistakes throughout the learning process. Making a mistake might strengthen that incorrect answer and make it harder to learn the correct response later. Counterintuitively, recent work suggests that guessing an answer first, even when that answer is incorrect, can promote better learning of a correct response than can studying the correct response all along. Kornell, Hays & Bjork (2009) presented participants with weakly associated cue-target pairs (e.g. Whale-Mammal). Some pairs were studied intact. For other pairs, participants were given the cue word and asked to predict what the response word would be before studying the correct response. Even though almost all guesses were incorrect, guessing first promoted better learning than studying intact.

One explanation (among several) for why guessing is helpful is that participants' incorrect guesses may act as mediators, or links, from the cue word to the correct target. To test the mediator hypothesis of error generation, we compared cases where participants generated guesses before seeing the correct response to cases where they provided a guess, or “alternative response” in the presence of the correct cue-target pair. The idea was that such alternative responses might have the potential to be better mediators than guesses made before seeing the target.

On a final cued-recall test, we replicate earlier findings of a benefit of guessing before seeing the correct response, as compared to studying the pair intact. Generating an alternative response produced only a small numerical benefit over studying intact. We further explored our findings by conducting Latent Semantic Analysis on the relationships between the cue, generated response, and target words.

Our findings complicate a mediator interpretation of error-enhanced encoding, as a case which would afford an opportunity to generate better mediators did not in fact improve performance.
Does Generation Protect Information from Retrieval-induced Forgetting?

Saskia Giebl, Toshiya Miyatsu, Alan Castel, Elizabeth Bjork
Department of Psychology

Abstract

Retrieving information from memory not only makes the retrieved information more accessible (i.e., the testing effect), but also makes related information less accessible, a phenomenon called retrieval-induced forgetting (RIF; Anderson, Bjork, & Bjork, 1994). In typical RIF experiments, participants are presented with category-exemplar pairs and instructed to memorize them for a later memory test. This reduced accessibility of related information, however, can be problematic. For example, treating a patient with pneumonia may lead to worse recognition of colds in subsequent patients.

The generation effect, the memorial benefit of generation over simply reading, has been demonstrated numerous times with a wide variety of materials (see Bertsch, Pesta, Wiscott & McDaniel, 2007 for a review). We compared the traditional RIF paradigm to one in which participants generated their own exemplars prompted by names of categories. We replicated RIF for the presented items (i.e., the traditional paradigm), but found no RIF among the generated items. Our finding suggests that this highly robust effect may come partly from generation's protective effect from retrieval-induced forgetting and other subsequent interferences.
Memory selectivity is associated with greater engagement of areas involved in deep semantic encoding for high-value items

Michael S. Cohen, Jesse Rissman, Alan D. Castel, Barbara J. Knowlton
Department of Psychology

Introduction

In a number of different learning contexts, some items will be particularly important to remember, while other items are not quite as critical. Previous work examining the neural basis of how value affects memory has focused on the role of the midbrain dopaminergic reward system in potentiating memory for valuable items via functional connections with the hippocampus. However, people may also strategically control encoding strategies to enhance memory selectivity for more valuable items.

Objective

We used fMRI to examine how differences in neural activity at encoding as a function of value relate to subsequent free recall for words.

Method

Each word was preceded by an arbitrarily-assigned point value, and participants went through multiple study-test cycles with feedback on their point total at the end of each list, allowing for further sculpting of strategy use. We examined the correlation between value-related modulation of neural activity and participants' selectivity index, a measure of how close a participant was to their optimal point total given the number of items recalled.

Results

Greater selectivity scores were associated with greater enhancement of neural activity in semantic processing regions, including left anterior ventrolateral prefrontal cortex and left posterior inferior temporal cortex, during encoding of high-value words relative to low-value words.

Discussion

These findings suggest that the selective application of semantic strategies is a critical mechanism underlying successful enhancement of memory for valuable items. Our findings are relevant to any setting in which participants need to focus on a subset of information that is designated as being particularly important, including in medical education. In addition, older adults tend to be particularly good at the type of strategic prioritization that we examine in the present work (e.g., Castel et al., 2002). Given the necessity for lifelong learning in the medical profession, understanding the neural and cognitive mechanisms of selective remembering can contribute to improved training programs for medical professionals at all stages of their careers.
An ECG Perceptual and Adaptive Learning Module Produces Large and Long-term Improvements in ECG Interpretation

Sally Krasne1, Carl Stevens2, 4, Zhen Gu3, and James Niemann 4
Departments of Physiology1 and Emergency Medicine2 and IDTU3, David Geffen School of Medicine and Department of Emergency Medicine, Harbor-UCLA Medical Center4

Abstract

Traditionally, 12-lead ECG interpretation is taught by describing the patterns and criteria that indicate various pathologies and relating them to the cardiac physiology. The learner is then taught a systematic, stepwise approach for detecting ECG variants and abnormalities, based on explicit criteria for each of approximately 200 defined abnormalities. Beyond such initial training, however, proficiency in interpreting ECGs is left to "learning by experience" which can be both inconsistent and inefficient. Ultimately, those who develop expertise are able to look at a 12-lead ECG and recognize abnormalities based on "pattern recognition" rather than conscious analytical skills. We attempted a more systematic and rapid pattern recognition-based approach, using an online Perceptual and Adaptive Learning Module (PALM), to improve students’ and residents’ ECG interpretation skills.

Images from fifteen diagnostic categories of ECG were presented in the form of multiple-choice questions, with each category containing a large number of exemplars (typically 25-40). Following answer selection, feedback on response correctness and the features characterizing the particular diagnostic category was provided. The priority of category presentation was based on previous learner response time and accuracy for the category exemplar and the number of intervening categories presented. Categories were retired following three successive accurate and rapid responses with learning module completion following retirement of all categories. Pre-, post-, and delayed post-tests were used to assess the impact of the PALM on ECG interpretation learning and its maintenance.

Students rotating in the Internal Medicine clerkship beginning with the final rotation in Spring, 2013, and those rotating in the Intensive Care Unit beginning with the first rotation in Fall, 2013, completed the ECG PALM. In addition, R2 and R3 Emergency Medicine residents at Harbor-UCLA Medical Center completed this PALM. We observed large and highly significant improvements in performance for all groups with no significant decrement in performance for up to 20 weeks, based on data obtained during IM and ICU rotations by students in the class of 2014.

ECG PALMs serve as an important adjunct to ECG interpretation training for students and residents. Introducing such training shortly before students are exposed to ECGs on the ward improves their interpretation skills. Repeating the learning module as a refresher throughout training may both enhance and continually assess maintenance of these skills.
Clinical reasoning consists of a complex set of skills, not the least of which is determined by accuracy in diagnostic reasoning. In this study we posit that encouraging the use of diagnostic reasoning tools during patient encounters may improve clinical competence by cultivating a more differentiated network of illness scripts and pattern recognition, both hallmarks of expertise development in medicine. However, in order to employ diagnostic reasoning tools, students must first embrace electronic tools in their clinical education. Two questions framed this descriptive study: 1) Which factors shape medical students’ attitudes towards diagnostic-reasoning tools? 2) To what extent do medical students use diagnostic reasoning tools during active clinical education? A survey questionnaire eliciting perceptions and use of diagnostic reasoning tools in the required core clerkships was administered to 147 participating students (91% of cohort, 82 males, 65 females; mean age = 26.62, S.D.= 2.48). All students reported using an electronic device for diagnostic reasoning during their third year clerkships. 54.1% reported using diagnostic reasoning tools for generating a differential diagnosis and confirming their final diagnosis, in contrast to 27.4% who used them only for differential and 15.8% for the final diagnosis. Desktop computers were the first choice for accessing diagnostic reasoning tools for 61.8% of the students, followed by smartphones favored by 38.62%. Students ranked UptoDate and Epocrates as the most preferred online tools for disease diagnosis. Over 95% of the students found diagnostic reasoning tools to be helpful in generating or confirming the final diagnosis, and 36% of students perceived them for as helpful for reducing medical errors. Overall, students view diagnostic reasoning tools favorably, and use them across all clinical specialties, patient mix, settings (wards, emergency or ambulatory), and type of illness (acute or chronic). Findings of this study have implications for how students are trained in preclinical years, and the impact of these tools in enhancing clinical competence.
Deferred Action for Childhood Arrivals (DACA) Students and Medical Education

Yohualii Balderas, Mithi del Rosario, Lawrence Doyle, David Hayes-Bautista
UCLA

Background:
Through no choice of their own, about 2.1 million children were brought by their parents to the United States without documentation before the age of 16 and were raised and educated in the U.S. as Americans. Having grown up in the U.S., these childhood arrivals have aspirations and educational achievements similar to those of their native-born peers. However, their unchosen, undocumented status has been a hindrance in their pursuit of higher education, especially in medical and other graduate health sciences. In recent years, there has been significant progress in legislation and policy allowing for greater contribution of these undocumented childhood arrivals to U.S. society. Eligible youth are now being granted permission to reside and work in the U.S. under a program called Deferred Action for Childhood Arrivals (DACA). These policy changes are giving DACA students greater freedom to reach their educational and career goals.

DACA students represent a suddenly accessible, valuable and largely untapped potential workforce. If current rates of completion of undergraduate education and subsequent entry into the field of medicine were to apply to DACA eligible youth in the U.S., this could result in thousands of new, largely underrepresented, minority physicians in the coming decade. Deferred action would defer removal, or deportation, of an eligible undocumented childhood arrival and grant lawful presence in the U.S. DACA-approved youth are granted work permits, social security numbers and driver’s licenses (in most states).

Implications of DACA and other pro-immigration legislation:
DACA, as well as other changes in immigration legislation, are removing barriers to higher education for DACA students, including financing medical education, international student fees, background checks, driver’s licenses, employment authorization, and licensure

How Medical Programs can encourage DACA Students to attend their programs:

1) Make it clear if DACA students are eligible for application. Without a published reference, DACA students have difficulty knowing which schools they are even eligible to apply to.
2) Offer financial planning advice early on since financing medical school is particularly challenging for DACA students.
3) Create flexible and generous scholarship packages.
4) Provide paid opportunities within medical programs, such as research positions, that would enhance students’ educational experiences.
5) Be aware of state policies as they may vary from state to state.
6) Be empathic and supportive of these unique students.

Conclusion:
This poster is a call to peers in the medical community to support qualified DACA students interested in pursuing a medical career. Changes in legislation are making it easier for this untapped talent pool to pursue higher education, and it is time to support them as they reach for these dreams.